Cutwidth II: Algorithms for partial w-trees of bounded degree
نویسندگان
چکیده
The cutwidth of a graph G is defined to be the smallest integer k such that the vertices of G can be arranged in a vertex ordering [v1, . . . , vn] in a way that, for every i = 1, . . . , n− 1, there are at most k edges with one endpoint in {v1, . . . , vi} and the other in {vi+1, . . . , vn}. We examine the problem of computing in polynomial time the cutwidth of a partial w-tree with bounded degree. In particular, we show how to construct an algorithm that, in nO(w 2d) steps, computes the cutwidth of any partial w-tree with vertices of degree bounded by a fixed constant d. Our algorithm is constructive in the sense that it can be adapted to output a corresponding optimal vertex ordering. Also, it is the main subroutine of an algorithm computing the pathwidth of a bounded degree partial w-tree with the same time complexity. 2005 Elsevier Inc. All rights reserved.
منابع مشابه
A Polynomial Time Algorithm for the Cutwidth of Bounded Degree Graphs with Small Treewidth
The cutwidth of a graph G is defined to be the smallest integer k such that the vertices of G can be arranged in a vertex ordering [v1, . . . , vn] in a way that, for every i = 1, . . . , n−1, there are at most k edges with the one endpoint in {v1, . . . , vi} and the other in {vi+1, . . . , vn}. We examine the problem of computing in polynomial time the cutwidth of a partial w-tree with bounde...
متن کاملA Note on Tree-width Path-width and Cutwidth*
Let tw(G), pw(G), c(G), !J.(G) denote, respectively, the tree-width, path-width, cutwidth and the maximum degree of a graph G on 11 vertices . It is known that c (G)~tw (G). We prove that c (G) =0 (tw (G)·!J.(G)·logn), and if ({Xj : iel] ,T=(I,A» is a tree decomposition of G with tree-wid~ then c (G) S (k+ l)·!J.(G)·c (T). In case that a tree decomposition is given, or that the tree-width is bo...
متن کاملControl of contagion processes on networks
We consider the propagation of a contagion process (“epidemic”) on a network and study the problem of dynamically allocating a fixed curing budget to the nodes of the graph, at each time instant. We provide a dynamic policy for the rapid containment of a contagion process modeled as an SIS epidemic on a bounded degree undirected graph with n nodes. We show that if the budget r of curing resourc...
متن کاملUsing cutwidth to improve symbolic simulation and Boolean satisfiability
In this paper, we propose cutwidth based heuristics to improve the efficiency of symbolic simulation and SAT algorithms. These algorithms are the underlying engines of many formal verification techniques. We present a new approach for computing variable orderings that reduce CNF/circuit cutwidth. We show that the circuit cutwidth and the peak number of live BDDs during symbolic simulation are e...
متن کاملJournal of Graph Algorithms and Applications
Divide-and-conquer approximation algorithms for vertex ordering problems partition the vertex set of graphs, compute recursively an ordering of each part, and “glue” the orderings of the parts together. The computed ordering is specified by a decomposition tree that describes the recursive partitioning of the subproblems. At each internal node of the decomposition tree, there is a degree of fre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Algorithms
دوره 56 شماره
صفحات -
تاریخ انتشار 2005